
Each year, the code-sharing platform 
GitHub releases its ‘State of the 
Octoverse’ report, which among other 
things ranks the popularity of program-
ming languages. The latest report, 

released in October 2024, had some good news 
for pythonistas, as Python programmers are 
called: for the first time in ten years, the lan-
guage JavaScript had been bumped from the 
top of the leader board and replaced by Python.

“This is the first large-scale change we’ve 
seen in the top two languages since 2019 — and 
it speaks to the rise in Python that’s accom-
panied the generative [artificial intelligence] 
boom we’ve seen over the past two years,” the 
report says.

For researchers who have watched the grow-
ing fusion of science and coding, that news 
perhaps answers a basic but rarely asked ques-
tion: with so many programming languages to 
choose from, which one should I learn?

But the choice is not that simple.
“For a very long time in computer science, 

a lot of people who work in programming lan-
guages have had the ostensible goal of [creat-
ing] the ‘one language to rule them all’,” says 
Rob Patro, a computational biologist at the 
University of Maryland in College Park. But 
that’s a bit like a carpenter who, armed only 

with a hammer, treats everything as a nail: 
different situations might call for different 
tools, and there is no single ‘best’ language.

Nature asked computer scientists and 
bioinformaticians what advice they would 
give to researchers who recognize the need 
to pick up some coding skills but don’t know 
where to start. Here are four key questions to 
help you decide.

What do you mean by 
‘programming’?
Some researchers build tools, others use them. 
Both are ‘programmers’, but the style of pro-
gramming and the skills required are different.

“Somebody has to make the lathe; some-
body has to make the electron microscope,” 
says Greg Wilson, a software engineering man-
ager at Plotly, a company in Montreal, Canada, 
that develops interactive graphing tools. “But 
most scientists don’t need to know how to do 
that — they need to know how to use those 
tools, not how to make them from scratch.”

The computational ‘lathe’ in this analogy 
is software designed to solve a given 
problem accurately and efficiently  —  say, 
aligning DNA-sequencing readouts to a ref-
erence genome. The code to do that is often 
mathematics-heavy and memory-intensive; 

it can require multiple processors working in 
tandem; and it is often written in languages 
such as C/C++, Rust and Fortran. These 
are ‘compiled’ languages — they require a 
compilation step to translate human-written 
code into instructions the computer can 
execute, and demand a deeper understanding 
of how computers work, but they produce fast, 
highly optimized software.

Most scientists, however, are data wran-
glers who want, for instance, to quantify 
gene expression by aligning RNA sequences 
to a reference genome rather than building a 
tool to do the alignment. This data workflow 
is typically accomplished using ‘scripting’ lan-
guages such as Python, R or Matlab, often in 
concert with computational notebooks such 
as Jupyter, Quarto or marimo (see ‘A notebook 
for reproducible Python code’). Such lan-
guages do not need to be compiled and are 
interpreted by computers directly, line by line. 
That makes this workflow interactive and easy 
to learn — type a command, get a result, repeat 
— but relatively slow, because the computer 
has no opportunity to optimize what it’s doing.

Web interfaces that help to make those tools 
broadly available to users are often written in 
JavaScript, and the databases underlying those 
interfaces might use a different language, such 
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as SQL. And then there are tools that tie these 
pieces together — another form of program-
ming. You can do a lot of data manipulation 
at the text-based command line, for instance. 
Workflow languages such as Snakemake and 
Nextflow make it easy to string tools together 
into sophisticated computational pipelines.

What are your colleagues using?
For many programming tasks, almost any 
language will do. But for beginners, it’s good 
to choose one that a colleague can help with. 
Furthermore, if everyone in your field is using 
a particular language, it helps to be using the 
same one, too.

Edoardo Saccenti, who specializes in 
systems-data analysis and applied statistics 
at Wageningen University & Research in the 
Netherlands, has a good command of multiple 
programming languages. For transcriptome 
analysis, he uses R. “All of the most-used 
packages and tools have been developed 
in  R,” he explains. But Saccenti also stud-
ies psychometrics, a branch of psychology 
that evaluates how psychological traits are 
measured and quantified. In that case, he 
turns mostly to Matlab. “I’ve never seen a 
psychometry paper written in Python,” he says.

Which tools are available?
Coders can extend the core capabilities of pro-
gramming languages using ‘libraries’ — collec-
tions of software routines that provide further 
functions. Many popular machine-learning 
libraries were developed in Python; the Bio-
conductor collection of bioinformatics tools 
works in R; and alevin-fry, a tool for processing 
single-cell RNA-sequencing data, was written 
in Rust.

Yanina Bellini Saibene is a devotee of R. 
Aside from her role as community manager for 
rOpenSci, a non-profit initiative in Berkeley, 
California, that provides open-source software 
tools for scientists, she is a member of the 
leadership committee for R-Ladies+ Global, 
a group that supports women and program-
mers from minority gender groups. “I think the 
only thing that I don’t do using R is my toast for 
my breakfast,” she jokes. But as a graduate stu-
dent at the National Institute of Agricultural 
Technology in La Pampa, Argentina, she used 
Python because the weather radar data she 
was studying could not easily be manipulated 
any other way. “At that time, in Python we had 
more libraries to work with that kind of data 
than the ones I had in R,” she says.

How big are your data?
Fast and slow are relative in computational 
research, and even ‘slow’ software can be 
reasonably zippy. Sometimes, however, the 
distinction matters. Patro, for instance, builds 
tools for genomics studies that can involve 
thousands of gigabyte-sized data sets. At that 
scale, many scripting languages can’t keep up.

Every program has to allocate memory, for 
instance — it’s what happens when you create 
a variable in the program to hold data. In com-
piled languages such as Rust, coders must 
specifically allocate the memory they want, 
then ‘free’ it up when it is no longer needed; 
scripting languages usually hide those details. 
As a result, scripting languages are easier to 
learn but less memory-efficient. “When you’re 
building data structures designed to barely fit 
into the working memory of a large server, a 
factor of two takes something from being com-
pletely infeasible to being something that you 
could run if you have dedicated access to the 
machine,” Patro explains. So, his team devel-
ops its algorithms in Rust.

Titus Brown, a bioinformatician at the 
University of California, Davis, says newcomers 
to his group often start with R, because it’s easy 
to learn and has all the required bioinformatics 
tools. But many reach a stage at which they 
want to analyse thousands of genomes rather 
than a handful, which then produces hundreds 
of thousands of output files. “At that point, 
people will often be directed more towards 
Python, because Python has a broader array 
of abilities to deal with that scope of data,” 
says Brown.

Help is at hand
The user community is also a key consider-
ation — Saibene says that’s one of the things 
she loves most about R. The language’s 
large, welcoming and engaged user com-
munity means that tools are developed and 
updated frequently; that local user groups 
exist around the world; and that tutorials and 
other resources are available in many spoken 
languages, including her native Spanish. The 
alternative — having resources available only in 
English — imposes a “cognitive load” on many 
users, she says. “You are going to remove a lot 
of barriers if those resources are in Spanish.”

Another consideration is economics. 
Although many languages are free to use, 
some require users to pay for a licence, 
which could put them out of reach of many 
researchers. Some scientists also prefer to 
use open-source software instead of pro-
prietary systems. That said, tool developers 
often create ‘bindings’ so that tools they have 
written in one language can be used directly 
in multiple others — and many programming 
languages include ways to execute code in 
others. Artificial-intelligence tools, such as 
GitHub Copilot, make it easy to translate code 
from one language to another or to generate 
code in an unfamiliar programming language.

There’s no shortage of online help, what-
ever language you choose. Useful resources 
include The Carpentries, the Data Science 
Learning Community and Stack Overflow.

Jeffrey M. Perkel is Technology Editor at 
Nature.

An open-source platform called 
marimo is designed for computational 
reproducibility and sharing.

Interactive code-writing environments 
such as Jupyter Notebook are beloved 
by data analysts because they combine 
software code, computational output and 
explanatory text in a single document. 
However, reproducibility advocates find 
them more of a problem: code cells can be 
executed out of order, and changing a value 
in one cell has no impact on other cells that 
depend on it. Thus, the ‘state’ of a notebook 
can easily get out of sync with its code. And 
the file format of Jupyter Notebooks means 
that version control can be difficult.

To try to overcome these reproducibility 
issues, in 2022, machine-learning 
researcher Akshay Agrawal, a newly minted 
PhD graduate from Stanford University in 
California, began work on an alternative: 
marimo. With funding from the SLAC 
National Accelerator Laboratory in Menlo 
Park, California, Agrawal and software 
developer Myles Scolnick launched the 
notebook in January 2024. 

Like a spreadsheet, marimo is 
reactive — changing a value in one 
cell causes dependent cells to update 
themselves. It’s also interactive, with user-
interface elements such as slider bars 
and drop-down boxes making it easy to 
fiddle with variables. Thanks to Pyodide, 
a version of Python that runs in a web 
browser, researchers can share executable 
forms of their notebooks and publish them 
online. And because the format is that 
of a simple Python file, version control is 
easier, too.

Bennet Meyers, a staff scientist at the 
SLAC National Accelerator Laboratory, 
uses marimo to create interactive tutorials, 
promote computational reproducibility 
and analyse data. The tool has largely 
displaced Jupyter Notebooks in his 
day-to-day work, he says. “The notebook 
style of marimo is extremely useful for 
quickly putting together exploratory data 
visualizations.” 

Like Jupyter, marimo is free and open-
source. According to Agrawal, it has been 
downloaded more than two million times 
since its launch.

A notebook for 
reproducible 
Python code
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