
Each year, the code-sharing platform
GitHub releases its ‘State of the
Octoverse’ report, which among other
things ranks the popularity of program-
ming languages. The latest report,

released in October 2024, had some good news
for pythonistas, as Python programmers are
called: for the first time in ten years, the lan-
guage JavaScript had been bumped from the
top of the leader board and replaced by Python.

“This is the first large-scale change we’ve
seen in the top two languages since 2019 — and
it speaks to the rise in Python that’s accom-
panied the generative [artificial intelligence]
boom we’ve seen over the past two years,” the
report says.

For researchers who have watched the grow-
ing fusion of science and coding, that news
perhaps answers a basic but rarely asked ques-
tion: with so many programming languages to
choose from, which one should I learn?

But the choice is not that simple.
“For a very long time in computer science,

a lot of people who work in programming lan-
guages have had the ostensible goal of [creat-
ing] the ‘one language to rule them all’,” says
Rob Patro, a computational biologist at the
University of Maryland in College Park. But
that’s a bit like a carpenter who, armed only

with a hammer, treats everything as a nail:
different situations might call for different
tools, and there is no single ‘best’ language.

Nature asked computer scientists and
bioinformaticians what advice they would
give to researchers who recognize the need
to pick up some coding skills but don’t know
where to start. Here are four key questions to
help you decide.

What do you mean by
‘programming’?
Some researchers build tools, others use them.
Both are ‘programmers’, but the style of pro-
gramming and the skills required are different.

“Somebody has to make the lathe; some-
body has to make the electron microscope,”
says Greg Wilson, a software engineering man-
ager at Plotly, a company in Montreal, Canada,
that develops interactive graphing tools. “But
most scientists don’t need to know how to do
that — they need to know how to use those
tools, not how to make them from scratch.”

The computational ‘lathe’ in this analogy
is software designed to solve a given
problem accurately and efficiently — say,
aligning DNA-sequencing readouts to a ref-
erence genome. The code to do that is often
mathematics-heavy and memory-intensive;

it can require multiple processors working in
tandem; and it is often written in languages
such as C/C++, Rust and Fortran. These
are ‘compiled’ languages — they require a
compilation step to translate human-written
code into instructions the computer can
execute, and demand a deeper understanding
of how computers work, but they produce fast,
highly optimized software.

Most scientists, however, are data wran-
glers who want, for instance, to quantify
gene expression by aligning RNA sequences
to a reference genome rather than building a
tool to do the alignment. This data workflow
is typically accomplished using ‘scripting’ lan-
guages such as Python, R or Matlab, often in
concert with computational notebooks such
as Jupyter, Quarto or marimo (see ‘A notebook
for reproducible Python code’). Such lan-
guages do not need to be compiled and are
interpreted by computers directly, line by line.
That makes this workflow interactive and easy
to learn — type a command, get a result, repeat
— but relatively slow, because the computer
has no opportunity to optimize what it’s doing.

Web interfaces that help to make those tools
broadly available to users are often written in
JavaScript, and the databases underlying those
interfaces might use a different language, such

HOW TO PICK A PROGRAMMING
LANGUAGE
Computer scientists and bioinformaticians address four key questions
to help rookie coders to make the right choice. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

: T
H

E
P

R
O

JE
C

T
 T

W
IN

S

1116 | Nature | Vol 640 | 24 April 2025

Work / Technology & tools

as SQL. And then there are tools that tie these
pieces together — another form of program-
ming. You can do a lot of data manipulation
at the text-based command line, for instance.
Workflow languages such as Snakemake and
Nextflow make it easy to string tools together
into sophisticated computational pipelines.

What are your colleagues using?
For many programming tasks, almost any
language will do. But for beginners, it’s good
to choose one that a colleague can help with.
Furthermore, if everyone in your field is using
a particular language, it helps to be using the
same one, too.

Edoardo Saccenti, who specializes in
systems-data analysis and applied statistics
at Wageningen University & Research in the
Netherlands, has a good command of multiple
programming languages. For transcriptome
analysis, he uses R. “All of the most-used
packages and tools have been developed
in R,” he explains. But Saccenti also stud-
ies psychometrics, a branch of psychology
that evaluates how psychological traits are
measured and quantified. In that case, he
turns mostly to Matlab. “I’ve never seen a
psychometry paper written in Python,” he says.

Which tools are available?
Coders can extend the core capabilities of pro-
gramming languages using ‘libraries’ — collec-
tions of software routines that provide further
functions. Many popular machine-learning
libraries were developed in Python; the Bio-
conductor collection of bioinformatics tools
works in R; and alevin-fry, a tool for processing
single-cell RNA-sequencing data, was written
in Rust.

Yanina Bellini Saibene is a devotee of R.
Aside from her role as community manager for
rOpenSci, a non-profit initiative in Berkeley,
California, that provides open-source software
tools for scientists, she is a member of the
leadership committee for R-Ladies+ Global,
a group that supports women and program-
mers from minority gender groups. “I think the
only thing that I don’t do using R is my toast for
my breakfast,” she jokes. But as a graduate stu-
dent at the National Institute of Agricultural
Technology in La Pampa, Argentina, she used
Python because the weather radar data she
was studying could not easily be manipulated
any other way. “At that time, in Python we had
more libraries to work with that kind of data
than the ones I had in R,” she says.

How big are your data?
Fast and slow are relative in computational
research, and even ‘slow’ software can be
reasonably zippy. Sometimes, however, the
distinction matters. Patro, for instance, builds
tools for genomics studies that can involve
thousands of gigabyte-sized data sets. At that
scale, many scripting languages can’t keep up.

Every program has to allocate memory, for
instance — it’s what happens when you create
a variable in the program to hold data. In com-
piled languages such as Rust, coders must
specifically allocate the memory they want,
then ‘free’ it up when it is no longer needed;
scripting languages usually hide those details.
As a result, scripting languages are easier to
learn but less memory-efficient. “When you’re
building data structures designed to barely fit
into the working memory of a large server, a
factor of two takes something from being com-
pletely infeasible to being something that you
could run if you have dedicated access to the
machine,” Patro explains. So, his team devel-
ops its algorithms in Rust.

Titus Brown, a bioinformatician at the
University of California, Davis, says newcomers
to his group often start with R, because it’s easy
to learn and has all the required bioinformatics
tools. But many reach a stage at which they
want to analyse thousands of genomes rather
than a handful, which then produces hundreds
of thousands of output files. “At that point,
people will often be directed more towards
Python, because Python has a broader array
of abilities to deal with that scope of data,”
says Brown.

Help is at hand
The user community is also a key consider-
ation — Saibene says that’s one of the things
she loves most about R. The language’s
large, welcoming and engaged user com-
munity means that tools are developed and
updated frequently; that local user groups
exist around the world; and that tutorials and
other resources are available in many spoken
languages, including her native Spanish. The
alternative — having resources available only in
English — imposes a “cognitive load” on many
users, she says. “You are going to remove a lot
of barriers if those resources are in Spanish.”

Another consideration is economics.
Although many languages are free to use,
some require users to pay for a licence,
which could put them out of reach of many
researchers. Some scientists also prefer to
use open-source software instead of pro-
prietary systems. That said, tool developers
often create ‘bindings’ so that tools they have
written in one language can be used directly
in multiple others — and many programming
languages include ways to execute code in
others. Artificial-intelligence tools, such as
GitHub Copilot, make it easy to translate code
from one language to another or to generate
code in an unfamiliar programming language.

There’s no shortage of online help, what-
ever language you choose. Useful resources
include The Carpentries, the Data Science
Learning Community and Stack Overflow.

Jeffrey M. Perkel is Technology Editor at
Nature.

An open-source platform called
marimo is designed for computational
reproducibility and sharing.

Interactive code-writing environments
such as Jupyter Notebook are beloved
by data analysts because they combine
software code, computational output and
explanatory text in a single document.
However, reproducibility advocates find
them more of a problem: code cells can be
executed out of order, and changing a value
in one cell has no impact on other cells that
depend on it. Thus, the ‘state’ of a notebook
can easily get out of sync with its code. And
the file format of Jupyter Notebooks means
that version control can be difficult.

To try to overcome these reproducibility
issues, in 2022, machine-learning
researcher Akshay Agrawal, a newly minted
PhD graduate from Stanford University in
California, began work on an alternative:
marimo. With funding from the SLAC
National Accelerator Laboratory in Menlo
Park, California, Agrawal and software
developer Myles Scolnick launched the
notebook in January 2024.

Like a spreadsheet, marimo is
reactive — changing a value in one
cell causes dependent cells to update
themselves. It’s also interactive, with user-
interface elements such as slider bars
and drop-down boxes making it easy to
fiddle with variables. Thanks to Pyodide,
a version of Python that runs in a web
browser, researchers can share executable
forms of their notebooks and publish them
online. And because the format is that
of a simple Python file, version control is
easier, too.

Bennet Meyers, a staff scientist at the
SLAC National Accelerator Laboratory,
uses marimo to create interactive tutorials,
promote computational reproducibility
and analyse data. The tool has largely
displaced Jupyter Notebooks in his
day-to-day work, he says. “The notebook
style of marimo is extremely useful for
quickly putting together exploratory data
visualizations.”

Like Jupyter, marimo is free and open-
source. According to Agrawal, it has been
downloaded more than two million times
since its launch.

A notebook for
reproducible
Python code

Nature | Vol 640 | 24 April 2025 | 1117

